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Abstract

The factorizable di._('retization of Sidilkover for

the compressible Euler equat ions ln'eviouMy demon-
,utrated fol ('h_tlllIel fl(5_v>;//aN been extended to ex-

ternal [low:,. The dissipatiotJ of tht _ original s('hente

has been modified to maintain stability for mod-

eJately stretched gtids. The discrete equations are

solved by symmelri< ('ollec'tive (;auss-,qeJdel relax-

alien and I+_.tS muhigrid. I;tdike the earlier work.

ovcleril_g the grid vevti<'_s in the flow divecti(m has

be(u_ lbmM to tw Illlll('('ess_tl? ". _N'olutions for essen-

tim inc'onqn'essible How (Alacl_ 0.01) and ._upercvit-
i('al flows have been obtained fov a f_drmAn-'li'elttz

ah'ibil with a contbtlnal6" mapl>ed grid. a,_ well a,_

a NA('A 0012 on an algebraically _eltel'ated grid.

Tile CUFI'eIIt WOl'k dent<)n.,_trates nearly O(tt) con-

vel_ell(e for sll])Solli( dire] sligl_tly tl'alLSOllic l_()ws.

Intro(hwtion

In t,he pas! sevelal ye;I,l's, there h&s ])een &ll o1114o-

ing effort in tile ('ompulational Nlodeling and Sitnula-

lion BI'aIIC]I of NASA l.angley [{esearch (!elli,eF, ill eel

laboration wilh researcher,- at I('ASk (o develop algo-

rithms demonstrating "Textbook Multigrid Efficiency"

(TMF,)I. 2, 3. The central theme of thi_ effort has been

the idea of t'h'an(li 1 ilia! ideal convergence tales for the

numerical solution of 15arlial differential equations can 15e

achieved if the relaxaiioli s(}lellle distinguishes between

elliptic, parabolic, and hylwrl)olic t)artitions of the dif-

ferential operator. (!onslvuct ion of an ideally converging

method requires that each ollhes(, l)artitions be treated

indel)en(tently and optimally, q'O achieve !iris, efforls are

being made to construct so-called "faciorizal)le" difler-

ellee schellleS ['of tile e(lllatiolls of fluid dynamics. A fac-

torizable scheme is one in which the discretization cor-

Ir'eetly separates the elliptic, parabolic, and h.vperbolie

partitions.

In the ease of steady invischl flow. the Euler equations

can be considered as a COmlSosition of two sul)systems.

One sulssystem corresponds 115fhe equations governing
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entropy and vortieity advection. This subsystem is hy-

perbolic in space. The other sul)system corresponds to a

fidl potential operator, which is elliplic for sul/sonic tlow

and hyl_erlsolie for Sul)ersonie flow. t:or a lmrcly Sul/er -

sonic flow, space nlarcllin_ is the nlosl efficient way of

solving, the Euler equalions. For sulssonic flow. the el-

liptieity of the full potential factor shouhl be effectively

handled by muhigrid, t fowever muhigrid is not effective

for advection ot)eralors, as the coarse grid only gives i)arl

of the correction for certaill smooth components of 111('

error. Existing mull igrid nlelhods for sul)sonie and lran-

sonic tlow rely on the coarse grid to smooth the entire

.,,yst(.m. As such. they are fiindanlentally limited 153' tile
ineflect.ivelless of tile tears(' grid ill COFl'eetillg tile part of

the error eorreslsonding to advection factor. This same

difficulty is true for high Fteynolds nt, ml)er viscous flows.

5idilkover 5 has devised a ('artesian grid diseretiza-

lion of the F+'uler ettuatioils t]la| sel)al'ates these two

sial)systems. In a previous work, l{ol)erts, Sidilkover

and Thonias 3 extended this sehenle in COllSel'va| iOII fornl

to general 15ody-lilied curvilinear coovdinaies. _olutions

to the e(lualions were oblained using collective point

(;auss-Seidel relaxation as a smoother eondhned with

F'A,_ mt,ltigrid. Results for sul)sonie and transonic chan-

nel flows were presented in Ref. 3, which demonstrated

essentially grid indel)enden( cotlx'ergenee rates. All the

grids used for these cases were quasi-uniform, witla grid

cells of unit aspecl ratio. [:urthernlore, the channel wall

had a conlinuous curvature to i)reelude the presence of

stagnation points, and the relaxation sweep was made in
the flow direction.

In the present pal)er, the work of Rol)erls, et al. 3 is ex-

tended lo external lifting flows a|'om,I airloils with I)olh

sut)criticat and Sul)ererilical fl'eeslream Mach nund)ers.

The presence of a stagnation point at the airfoil lead-

ittg edge requires mi additional dissipation term ill lhe

nlomentunl equatiotJ. The form of lhis dissipation wa.,,

presented in Ref. 3 and is fotmd to be effective. ('Olnlm-

rations are shown in whieh an odd-even vorlieiiy error is

propagated downstream of the airtoil. This error origi-

nates at the trailing edge of the airfoil, and causes erral ic

convergenee. A dissipalion lerm Io smooth this vorlical

error is added Io Ihe IllOllleltltllll e(lllaliolts.

The mathematical formulalion of the scheme, which

has l_een presented 15",'Sidilkover :) and Rolserts, et al. 3 is

briefly recounled in the followin_ seclion. MotlificatioJls

to the _cheme as presented in Ref. 3 are noted, t'k)llow-



ing that, the multigrid relaxation is described. Subsonic

channe] flow resulls are presented to demonstrate the

second-order convergence of the discretization. Results

for subsonic and transonic airfoils are presellted next,

Subsonic solutions %ra I(Arm_n-Trefftz airfoil are used

I0 co[llpal'e with all exacl SOIuIiO1L In a&lition, a tran-

sonic solution for t.his aMoil is presented. The ]'(ArmAn-

Trefl'tz aM'oil airfoil uses a conformally-mal)ped grid with

unit aspect ratio cells. 'lo d(.monstrate the effectiveness

of the scheme when applied t o a more realistic cast. sub-

sonic and transonic flow around a NAf:A 0012 i_ also

presented. These colnpntations are performed on a grid

generated algebraically, with moderate grid stretching,

skewness, alld aspect ratio.

Mathematical Formulation

The artificial dissipatkm of the factorizab]e scheme

can be described by ilrst presenting the modified equa-

tion, or first differential approximation (FDA), of the

discrete scheme. This is the diflerential equation which

is found by expanding the ditDrence equation in a Taylor

series about each grid vertex and considering the lead-

ing terlns of the trUllcatioll error. These [ei'lUS are the

art.ificiN dissipation of the scheme.

The starting point for tile scheme is tile two-

dimensional Euler equations in non-conservation torm.

l,et p be the density, ,7 = iu + .}t' be the, velocity, and p

1)e the pressure. 'File entropy s is defined as

(,:0) ""._ = (1)

where p0 and p0 are a reference pressure and density,

respectively, and _ is the ratio of the specific heats.

Then the Euter equations may be written in the vari-

ames (._, u, v,p):

ff.Vs = O, {2a)

tT.Va+ l-Vp = 0, (2t-,)
P

pc'-'V, ff+ a.k-'l, = O. (2c)

The faclorizability of the scheme depends on the fornl.

of tile artificial dissipation added to this system of equa-

tions.

The entropy is only weakly coupled to the momen-

tum and the pressure equalions through the equation

of state (1). In fact. the entropy equation corresponds

to one of the advection factors of the Euler equations.

Therefore, it may be discretized independently of the

monmntum and pressure equations in any apln'opriate

way without affecting the factorizability of the schmne.

The advection operator _.V uses simple upwind differ-

encing in Eq. (2a). Let {_,TI) be a general cnrvilinear

coordinate system and define the contravariant compo-

nents of the velocity, (I7,/') by the I ransformation

.l? vI(;: (,:)

In this coordinate system ff.Vff = UO{ + 1:0,/. Tile equa-

tions are discretized on a uniform grid in {c,_/) spa(e.

with a grid spacing A( = A_? = 1. The FDA of the

firsl-order upwind diflerence aplwoximation t.o ff.V is

' t;'14- iq _= ff-V-- 7; = 0 i4

and the entropy equation is discretized as

qs = O. (5)

A second-order upwind discretizadon of the adveetion

operator has also been used in Eq. (5). However, it was

shown in Ref. 3 that the use of a second-order advection

operator has an insignificant affect, on the computed re-

suits.

The dissipation for the momentum and pressure equa-

tions, Eqs. (2b) and (2c) given in Fief. 3 is tile muhidi-

mensional upwind dissipation of Sidilkover 6 In vector

notation, this dissipation is written as

2a.va+ 1-vp- "'"_v(oc v-u+J.vv) =0, (s)
p 2pc

pc'2"C_, i'[ n t- gi._"p -- pc--Tj-- V. ff._-vffq_ _-'rp = t), (7}

where c is l.he speed of sound, o',,, and a;, are scaling

coefficients, aud ( is a length scale iwoportional to the

grid spacing. Note that the dissipation of the nlOlllen-

turn equation is the gradient of the pressure equation

residual, and the dissipation of the pressure equation is

the divergence of the momentum equation residual. Also

note that the curl of Eq. (61 is identical to the enfl of

Eq. (2b), i.e., vorticity equation of the governing Euler

equations is unaffected by the artificial dissipation. The

vorticity equat.ion corresponds t.o the second advection

tactor of the Euler equations.

If the adw_ction operator, presstlre gradient, and di-

vergence term in Eqs. (6) and (7) are discretized us-

ing central differences, the scheme is second-order accu-

rate and factorizable, lIowever, such a scheme is not

/t-elliptic. This lack of h-ellipticity is a result ot the

central difference approximation to the advection term

in the momentum equation, Eq. (6). Sidilkover shows

that this advection operator corresponds to vorttcity
• 5

advectton' . Replacing this operator by the first-order

upwind approximation in Eq. (4) restores h-ellipticity

and the scheme remains factorizable, lint it now l)ecomes

only first-order accurate. Note that the pressure advec-

tion term ill Eq. (7) continues to be approximated by

second-order central differences.

To obtain second-order accuracy while maintaining

h-ellipticity, the advection operator in the momentum

equation must be replaced with an upwind difl'erenct op-

erator. However, this operator also contrilmtes to t lu fidl

potential operator. Simply replacing the central differ-

ence with an upwind differem'e will change the form of

the lull potential operator, which we wish to avoid. To



obtain a second-oMer upwind advection operator with-

()tit. changing tile full l)oiential operator, Eq. (6) is nlod

ified to be

p 2q

a"' t' V ( p(2 V. 6 + tT.Vp) =0, (S)
_p(,

where q = ,,,a×(Ittl, b'l). [St,cause tfie ad¢titiolml ternt

involves tile curl of ill(, ntonientunl equation, it is lrans-

parent Io ilrotational disturl)ances. If a sohition is a

pure potential sohition, tlien not only is Eq. ((;t satisfied

identk:ally, I)ut Eq. (_) is satisfied ms well. llecause the

continuity equation (7) is unchanged, a potential solu-

tion to Eq. (6) and (7) is a sohition to Eq. (<"4)and (7).

in other words, tile modification to tile niontentunt equa-

tion does not change the hill l_otential ol_elalor, wit(oh

is wlial is wanted.

Expanding the additional lerln in Eq. (,"4! the principal

part of the operator is

f--J×_'×(_7"_lT+l_'P)=2q

(o)

Tile first ternl in the square brackets nlay be contbined

witfi the advectknt operator in Eq. (_) to yield the

H)A of a second-order Ulwcind adveetion operator. This

second-order operator operator is denoted as qH . The

pressure ternis can be ntanipulated such lllat the rentam-

ing lernis in the square brackets be can be written in the

fornl _D. This puts the nlonientunt equation in the fornl

(lil_,_ + _1) + l_p _ rr,,,(_ (pc2_.L_ + _.._p) = O.
p 2pc'

(tO)

In l'_oberts, et al. :I the i)ressure ternt in Eq. (9) was

ignored because the principal part of iliis tern( vanishes.

In faci, if the flow is I)arotrol)iC the ternl vanishes iden-

lically, llowever, faihne to inehlde Ibis lel'tli ill the con-

servative discreti_ation gives rise to a first order error, a

pohlt that wasltC, t recc, gnized a! th(' time. hi the cllrl'ellt

work these terms are inchlded in the diseretizaiion.

Dis<:retization

The faciorizal)ilily of t ll(_ FD:\ is a necessary condi-

lion for the faclorizal)ilily of the difference schenie, but

it is not sufficient. For the dilference schenw 1o 1)e fac-

iorizal)le, lit(, difl'eren<'e ol>eralors inusl ('onunute in the

same way as the diflerenlial operators 5. hil rodueinp_; the

difl'eren<'e apl)roxintat ions to tit(, partial tier(vat.ire oper-

atOFS.

4' = "<+, ":;= ",,+,
,, +.. , ,, +...,()¢,1 " O,m

o_',,= o_o,, +....

lfie following conditions ntust hold

('9..((P_ = ( ,1,1 ( ,1 "

. _h . dl ..h )h
(.l:lll(# ( _ (#_ll( 11 •

The followin_ difference opel'ators sa!isfy this condition:

., 'I i0il '[i : i0 . o:; = ,C o .
='_ 0 - -2 -

0_ = _ -4 . 0.,=_ - -4 - .
-- 2 2

.,,,[io: 0 .
()<_" 4 0 -

To write Ill(, colnplele dis(Tel(, schent('. Ill(, sul)seripl h

is used to denote a standard difl'erenc(, to the corr(,-

spondin,e, ol)eralor, and tfi(, addition of the overbar ( )

denotes tit(' "wide" (li[[erences given al)ov('. Tile seeOlld-

dil[erence exliressions Iliay be expressed in fhix fOl'ln bv

lakint4 a six-point differt'nee ('('lit ered on nit edfAe bel wt'('n

IWo vertices, alld t,liell lakilig a two-point dilference of

those exl'Jressions celtteled Oil a Vel'tex. Tit(' sul)scripis •

and i, are llsed to denote dif[er(.nce opel'alol's ('('lllel'ed

Oil an edge or a vertex, resl)eelively. The fully discrete
setierne is then wrillen ms

h
(! .s=0. (lla)

qw,u + V'.I) _ +
P

<'"'v:' + ,v.v:',)
2/)('

= O. (llh)

p(2._, ff + 5..T,_,t_

i ,._,u+ -- + lilt)
• 2p

Detail,'- of tfic velocity IcrlltS in D al'e found in the tier. 3.

Tlie pressure lernis hi D are evahlaled using l]te wide

([i[[erenee ()l:,t!l'al(il's defined aliove.

The scaling coefficients are

I

erm = nta×(:l/, :'_L), "rl' Ina×(,ll..lI, ) (12)

where Jl is the local *laeh nunil)er, and M, is a cutoff"

Math nulnber Io prevent divisioll by zero. The eulof[ is

cilosen to I)e O(h). and essenlialiy lieeontes active near

stagnation ])oh(is. '[tie purl)ose of the rescalhig of the

l)re.-,stlre e(ltlalioli diSSil)alion, rrs,, is lo i)revelil th(' ellip-

tic factor hi tile discrete equal(oils froni beconiinlA the

skewed I,aplaeian operator ill lhe in('onipressil)ie lhnh.



Currently, we take ,'1I, = plAMI, where v = 2

and AM is tilt two-point difference in Mach nmnl_er

on an edge. When :li, > :1I. it is necessary to add ad-

ditional dissipation to the advection ope,'ator q:,. The

form of this dissipation is a live-point iiseudo-Lal)lacian,

1 c( (0_ + 0_) ". 13)d:p(i= . max(0,).L - _11) 7

where .] is the .lacobian of the coordinate transforma-

tion. J _= a{y, - Y,_._,I- This operator is added to both

the entropy and the momentum equation, and is cast. in

tlux form in order t.o maintain conservation. No at.|.erupt

has been made to optimize either the coefficient v or t.he

form of the operator d_p.

When soh'ing for the flow around an airfoil, it has

been observed that a short-wavelength port|city error is

generat.ed nea, the tra I ng edge and is propagated down-
S|lealn. This error is an odd-even errol' of the S|,l'eamwise

velocity component m the crossflow direction. The error

persists to tile' outflow boundm'y, and can cause conver-

gence dithculties. An additional dissipative term ltnls!

l)e added to the momentum equation to reduce the er-

rol. (_ar,f' nulsl be taken to insure |ha! the dissipation

does not affect the factorizabilily of the scheme and pre-

serves second-order accul'acy.

Tilt' form of this dissil_atio,, follows from a formulalion

(_,ties . who observed thal V x ,_,of '" ' " = V(V-gl) - V-'a.

The l,aplacian acting on ff is dissil)atiw.. In the present

scheme, the addil.ion of a term of riffs form to the mo-

mentum equation will not aflec! the facl.orizallility or the

s(heme, a._ it. is t.ransparenl to the irrotational, potential

part of the solut.ion. This vorliciLv dissipat.ion is

,3t7 "" ( 14 )d,. _ = _ t_ × V'J,', × ,-_,

where it ix a dissipation coefficient, _g is an undivided

dif[erence of the velocity m a grid direc|.ion, ¢ is the grhl

spacing directed in thai direction, and ,,7h,, is the discrete

vorticity centered on an edge and computed using the

wide differences. Currently the coefficient tl is taken to

be 0. l. No at.t.enll)t has been made to optiinize this dis-

sipation.

As written, the Eq. (11) ix valid only rot sul)sonie

flows. This is because the iwessure differences in the

artificial dissipation |.erms are not fully upwinded in a

supersonie zone. A simple modification to Eq. (11) can

be made by rescMing the gradients of the pressure when

the flow becomes sonic. Introducing tile parameter t_,

defined as

_,"= max{I, AI 2 ), {15)

the final form of the scheme is

h

q .s -- d,p.s = O, (16a)

qm,u - d_p_ + d,.g + V,.I) h + 1VJ'p
P

0",,,_V,h [ 2,+,, __ 1._p, '_
v 7u'x',,P)

/p(' v, ._ "5'-
\

= O, (lGb)

- pcTV, • \ + " (v'll + vl')/,)
2p

= O. {16c)

Because the difference equations (16a), (16b)

and (16c), can be written as a central difference part

plus a dissipation, it is straightforward to obtain a con-

servative discretizatiou. The conservation form of the

Euler equations are discretized using a cent pal-difference

finit e-volmue approximation.

_h.(pff) = O, (17a)

_'¢'. (p_[il) + _"_'p = O. (1 7b)

v".[(p_ + l,)a] = 0 (17,.)

where _ = iT.gl/2 + p/ip(_ - 1)) is the total energy.

The dissipative fluxes on each cell face are compmed

ill terms of (s. u. v,p} usinR the appropriate difference

operators in Eq. (16). The artificial dissipation in

Eqs. (l(;b) and (DOc) can be rewritten as

aa = -V,,I);' + d_pt7 - cl,,_

1 . - t,

" (v"

This is a conservative form of the dissipat.ion ca_st, in

terms of the primitive variables. The t.erms inside the

square bracket in Eqs. { 18) aud ( 19} are now interpreted

as dissipative fluxes. These ternls are discretized on cell

faces according |o the appropriate wide or narrow dif-

ferences. Tile first and second-order upwind advection

operators qh aim (ll_h, and the terms V,,D h in Eq. (lS)

may be recast in conservation form and evaluated on

cell faces. The length scale ¢ is evahtated on the cell face

and is taken as either/,:¢ or k, is used. whichever is more

nearly aligned with the flow direction. This assmes that

the advection operator in Eq. {16b) is fully upwinded

when the flow is grid-aligned. The scaling coefficient.', a,,,

and _rv are evaluated using the Mach number on the face.

In addition 1N the dissipation terms, examination of

Eqs. (lGb) and {16c) shows that tile pressure g_adi-

ent terms are disc,etized using the wide stencils. The

central-difference part of the conservation equations (17)

must be corrected to account for these wide differences.

This ix done by adding a term IN the dissipative fluxes

for |,he mOlllenttlln and pressure equalions as ro]lowq:

,_7 +---fi_-- 1 (X_" _ _7"'} 1,, (20)
p \ ./

Once tile dissipative fluxes (as, Ju,/it,. ap) have been eval-

uated, they are converted Io the conservation variables



I)y t he I ransfornla! ion

( .. o o lOa.. I = -:,.I, ,, 0 "t':/ a"
-.,,/. o . ./,:J '

? )\a/-/ -0(.-_+,,-)/_ ._ .,, .,' h/:-_J _v\/
(22) 10'

wlnere h = _ + p/p is the total enthallo'. "_-

Solution Procedure _ 10'
o

The solulion of the discrete eqtt,'_xtions is performed us- ;,
¢d,

mga symmetric point colleclive (_auss-Seidel i(eration,

which has been found to be a vevy effec|ive smoolher.
10 _

In the previous work 3 the grid vertices were ordered in

lhe flow direction, so that the adveetion factor woukl be

solved by marching during the forward sweep. Similm'ly,

in the presenl work the grid vertices are sorted in the 10

treest, reant direction. Each Gauss-Seidel sweep is under-

relaxed with a factor of 0.7 for stability. The residuals

of the conservation equatiolns [rt,, rm,, r m , r/, ) are corn-

puled at each vertex using the discretizalion presenled

in l he previous seclion. The,,,e residuals are lhen trans-

formed Io the residuals of the primitive variables by the

inverse of the transformation in Eq. (22).

At each l)oint, the update to ttne solution is given by

M _u = _ r,, (23)

wtnere M is the matrix of coef[icienls of the inimitive

variables at vertex (i, j}. The coefficients are found hy

collecling the contributions to vertex (i, 3) from the dissi-

pat,ion lel'l:llS Ol3 the four surrounding faces. Because the

entropy equation decouples from the rest, of the system,

this is a block diagonal matrix wlwre the upper block is

the upper left-hand evlfv'.v, and the lower block is a 3 x 3

malrix of coefficients inultilflving u,,j, e, 4, and p,,_. Tiffs

matrix is easily inverted.

The relaxalion is accelerated using a s(andard Full-

AplwoximatioIl Scheme (FAS} nmltigrid. A sequence of

grids O,c, (;I,-1 ..... Go is used. where (;I, is the finest

and ('0 the coarsest.. Let l:,_._n be (he coarse grid oper-

ator. u I).t, Ihe vec:t.or of the conservation variables, l_'_n

be the fine-l.o-coarse grid rest riclion operalor, and 12 -1

be the coarse-to-fine grid prolovlgalion operalor. If fit. is

the curren! solulion on grid k. the residual on this grid

is ra = ft - L_-fi,_-. This is the residual of the conserva-

lion equalions, llol the primitive equat iovls. This leads

to lhe coarse-grid equation

[,_.-1fi_-, f_--I = _ ( )= ll,._lrJ,+Ll,-i l_--Ifik • (24}

:\tier soh, ing the coarse-grid equation for u_--l, the fine-

grid solut.ion is corrected by

ua +-- fi_ + I_ fit.-i - l__lu_ , (25)

/7, "" ©

.(:

j.

," -K]- - Ick,_ - c,I

_" - -0- e.
.... /:,- _(s - so)

i i i Jill| i

10 _

10 _

A

,--I

10'

1 i I llll[ i i i I _11_ ¢'

10 _ 10:0_

h

l:igurc 1. ('onvergence of lift. drag. and enlropy for

chamlel flow with a IO<Z I)mnp on the lower wall

f']<tuaiion (24)ix soh'ed l)y applying the same relaxation

procedure that is used _o soh,e the line-grid eclualiovl.

Multi_,,'id is applied recursively Io the coarse-grid equa-

l ion. On the coarses! grid, many relaxation sweeps are

performed 1o insure thal the equal,ion is solved <'om-

t)lelely. A convenlional I-cycle or l l-cycle ix used.

Results

To COlltirit! the order of accuracy of the scheme, solu-

tions for the channel configuration used in fief. 3 were

obtained for a sequence of grids starting at 7 × 3 and

ending at 769 × 257. Results are shown in Fig. 1. The

lift and drag values are ll_" integrated forc'es <m line lower

wall. Richardson exlrapolat.ion was used t.o comlmte lhe

exac! lift coefficie_lt.. The L_ norm of the difference be-

tWeell the local and freeslream entropy is also shown.

It is seen thai all three quantifies exhibit second-order

cot]vergen('e in the grid sl>acing.

The tirsl set of external flow resuhs are for flow around

a symme( tic l(&rnl&vl-Tref[l z airfoil wit h a ! hickness ratio

of abom 0.15. An O-grid was generated using a confor-

real mapping and is shown in Fig. 2. The radial slretcll-

iltg fan|or was choseln to lnailltain uDit cell asl)ec_ ratio,

and grid lines are orthogonal. The finesl grid tot all cases

is 2.'57 × 257 and the coarsest grid is 5 × 5. The ouver

I)oundary is aplwoximately 150 chord lengllls fl'om the

airfoil.

Dirichlet conditions are used at the outer boundary,

a uniform freestream being specified. No far-fiehl vortex

corv'ecviow is apl)lie<l. One-sided first-order dith'rence.-

;-11"¢,'Ilsed ill the wall. The tangency con<liticm g.fi = 0 is

entoreed explicitly by zeroing-out the component of the

nmmctfl, unl equation residual in tlw direclion normal io



Figure "2. (!onformal grid for I{,_rmdn-Treft'tz airfoil.

the wall.

Solutions are obtained using a FMG cycle to initial-

ize ttle solution. A solution is cmnputed on the coarsest

grid and prohmged to the next grid to obtain a starting

solution for that grid. This procedure is continued re-

cursively until the finest grid is reached. On each grid,

a I'{ 1, 1) muhigrid cycle is used to solve the system. Ten

multigrid cycles are run on each of the coarse grids, and

twenty cycles are run on the finest grid. After each sym-

metric Gauss-Seidel relaxation sweep, an additional six

streamwise sweeps are done on the wall and its neigh-

boring row of vertices.

For the first case the freestream Mach mHnber is 0.01

and the angle-of-attack is 2 °. A comparison of the com-

puted surface pressure coefficient with the exact incom-

pressible solution is shown in Fig. :3. Excellent agree-

ment is seen. Convergence rates for the continuity equa-

tion residual as well as the lift and drag coefficients are

shown in Fig. 4. On the coarse grids up to the 129 x 129

grid the convergence rate is essentially independent of

the grid spacing, with an asymptotic rate of about 0.2.5.

This slows down considerably on the 257 × 257 grid which

has an asyinptotic rate for the continuity residual of ap-

proximately 0.6 per cycle. There is some slightly erratic

behavior in the convergence rate on the fines! grid. Both

lift and drag are converged after only two to four multi-

grid cycles on each grid.

A second case for the l'_,rm,4.n-Treft'tz airfoil at the

same freestream Mach number but an angle-of attack

of 10 ° is shown in Figs 5 and (3. The comparison of sur-

lace pressures with exact values shows very good agree-

ment. The 65 × 65 grid solution misses the suction peak
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noticeably, but tile two finest Arid are very close to the

analylic sohntion. The convergence rates shown in F'ig. G

are very similar to the previous case. The asymptotic

rate for the continuity equation residual is about 0.:]5

per cycle on the coarser grids, and about 0.G on the

finest grid. The lift is converging more slowly on tile

[mest grid, taking abou! five multigrid cycle to reach its

asymptotic value.

A transonic case is shown next, with a freestream

Mach number of 0.7 and an angle-of-attack of 1% The

surface ('v distribution is shown in Fig. 7. showing the

upper-surface shock at approximately 30_, chord. The

peak Mach number on the airfoil is apl_roximately 1.15.

(!onvergence rates are shown in Fig. s and are compa-

rable to the subsonic case. The forces are converging in

about ihree to four cycles on each grid.

The grid fbr tile cases shown above is orthogonal with

unit aspect, ratio cells. To ascertain how the scheme be-

haves in a more realistic case, subsonic and transonic

solutions for a NACA 0012 have been obtained on an

algebraically generated O-grM. The grid genera/or uses

the transfinite interpolation method of Eriksson 8. The

grid near the airfoil is shown in Fig. 9. The fine-grid

dimensions are 257 x 129 with lhc outer boundary lo-

cated approximately 100 chords from the airfoil surface.

The grid is more skewed at the trailing edge than the

I,_ArmAn-Trefftz grid, and the cell aspect ratios vary from

ahout 1:1 to 4:1. This grid is representative of a good-

quality O-grid for a single-element airfoil. The coarsest

grid is 9 × 5, and tile same FM(; cycle and Imumlary

conditions are used as for the l<ArmAn-Trefftz airfoil.

A solution for fi'eestream Math number of 0.01 and
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angle-of-attack of 20 is shown in Fig. 10. (:onvergence

rates are shown in Fig. 11. A deterioration in the con-

vergence rates compared to the l'_rmAn-qYefftz airfoil is

observed, and the rate now appears |o be slightly more

grid-dependent. This is atlrilmted t.o the varying aspect

ratio of the grkl cells. The asymptotic rate on the fittest.

grid is about 0.5 per cycle. The forces are converging in

about six to seven cycles on all grids.

The final results is for the standard test. ease of 31,._. =

0.80, o = 1.25 °. This is a much more severe t.ransonic

case than the one shown for the K&r,n&>Trefftz airfoil.

The solution in Fig. 12 shows the strong suction-surface

shock at about 60f_, chord, and the weak pressure-surface

shock. The peak Mach number on the suction surface

is about 1.35. The convergence rates for this case are

shown in Fig. 13. The asymptotic rate for the continuity

residual is quite slow on the finest grid. although the

forces are convelging in six to seven cycles.

A major part of the slowdown in the convergence rate

stems from the anisotropy of the full-potential fact.or in

the transonic regime. This was not as signiticant as for

the K&mg.n-Trefftz resuh shown in Fig. :q because of the

relatively small size of the supersonic region in that case

and the lower fi'eestream Math number. Point relaxation

becomes decreasingly effective as a smoother for strongly

sul,ercritical flows. This can be alleviated I)y using line

relaxation in the radial direction, which has the addi-

tional benefit of being more effective on stretched grids.

Conelusions

A fac/orizable discretization of thr compressible Eu-

]er equations on general curvilinear body-fitted grids has

been presented. This work is a], extension of lhe lwevi-
ous results of Roberts. Sidilkover and Thomas io lift-

ing airfoil flows. :\ modification of the original dissi-

pation has been introduced IO preserve the slabilily of

the point collective (-;auss-Seidel smoother without de-

stroying the factorizability of the discretization A sig-

nificant simplification of the original scheme has been

the elimination of streamwise relaxation and replacing

it with simple lexicographic symmetric relaxation. Both

subsonic and transouic results for K&'m&n-Trefftz and

NACA 0012 airfoils demonstrates good accuracy and

fast convergence. Nearly O(n) convergence rates for the

residual are demonstrated subsonically and for slightly

supercritical flows. The convergence for a more strongly

transouic flow is siglfificantly slower primarily hecause

of the anisotropy of the differential operator in the tran-

sonic regime. The use of line relaxation should improve

this, and additionally is should be well-suited for more

severe grid stretching.

Acknowledgments

The author would like t.o thank his colleague David

Sidilkover for his continual input of experience and sug-

gestions, and for many clarifying discussions regarding

the properties of his scheme. The author also gratefully

acknowledges the technical discussions with and support

of Jim Thomas and (31arlie Swanson.

Refel'ellees

t. Roberts, T. W., Swanson, R. C., and Sidilkover,

D.. "An Algorithm for Ideal Mulligrid (:onvergence

for I,he Steady Euler Equations," (!otnp_tttr._ and

Fluids, vol. 2_, nos. ,1 5. pp. 427-442, 1999.

2. Thomas..I. 1,.. Diskin, B., and Brandt, A., 'Dis-

tributed Relaxation Multigrid and 1)efect (k,rrec-



-1 -

-0.5 -

u _ 0-

0.5 -

-- Computation, 257 x 129 grid

.... Computation, 129 x 65 grid

....... Computation, 65 x 33 gnd

J i J i I _ L J L I i
0.5 1

x/c

Figu,'e 10. (!Oml)Uted surface ('r for a NA(IA 001_

airfoil, 11..,_ = 0.01, n = 2 °, fine_l grH 257 × 1"29

grid.

-1.5

,;0.5

0.5

-- Computation, 257 x 129 grid

.... Computation, 129 x65 grid

..... Computation, 65 x 33 grid

/ J _ h _ I J _ _ I
0 0.5 1

x/c

Figure 12. (!omt)ut,_d surfa'e ('r for a NA(!A 0012

airfoil, .1I-_ : 0._(). n : 1.25 °. fin_sl grid 25T _< 12!)

_rid.

--i

-4

-5

o -6

11-

-2

-3

-7

-8

-9

-lo+

F
?

' L_(mo)
.... e- - Cl

c_

20 40 6O
Iteration

04

035

0.3

0,25

J
0.2 j_

015

0.1

0,05

' 8'oo

Figure 11. ('onv_wg¢'m'( ' of residual and forces for a

NA('A 0012 airfoil, ,1I_ = U.UI, a. = 2 °, fiu.esl grid

27:,7 x 129 grid.

1

0

-1

-2

-3

_'-4
£
v
_i',, .5

-6

-7

-8

-9

-10

0.5

04

0.3

02

01

' 8_o

J

t-'igure 13. ('onv('rgenc_" of residual and tbr,'(_s for a

NA(!A 0012 airfc, il. ),I_._ = 1).,";.:'>.,_ = 1.25 °. tinesl

grid 25]" × 12.9 grid.



lion Applied to the (_ompre_,_ibh. Navier-_tokes

Equations," ,41.4A Papcr 99-333,1, 1999.

3. Hoberts, T. W., Sidilkover, D.. and Thomas, ,1. l,.,

"Muhigrid t/elaxalion of a Factorizable, ('onserva-
live l)iscretization of the (:ompre_siBle [;'low Equa-

lions," ,4 IA,4 Pap+r O0 2',2'52, 2000.

.I, Brandt. A., "Muhigrid Techniques: 19S.l (',uide

with Applications to Fluid Dynamics," GMI)-

._tudie ._5, (;MD-F1T. 19,'S5.

5. Sidilkover, 1)., "Factorizal_/e Schemes for the Equa-

tions of l"luid Flow," I('ASF Ileport 99 20, 1999.

6. Sidilkover, D., "A (;enuinely Multidimensional Up-

wind Scheme and Efficiem Multigrid Solver for lhe

(:ompressible Euler Fquations,'" [('ASF Report 94

84, 1994.

7. Giles, M., "trNSFLOW: A Numerical Method of

[:nsleady [nviscid Flow in Turbomachinery," ('.TI,

Heport 195, Massachusetts Institute of Technology

Gas "|'_wl_ine Laboratory, October 1,%%_1.

_. Eriksson, L.-E.. "(;eller,_lion of Boundary-

(kmforming Grids Around Wing-Body (!onfigu-

ralions [ising TrmMinile lnterpolatiolL'" .|/.1_I

Journal, rot. 20, no. 20, pp. 1313-1320, October

1982.

10


